
FREEZING OFTHE THAWED ZONE AROUND A WELL IN FROZEN SOILS 

TAKING INTO ACCOUNT THE PRESSURE-DEPENDENCE OF THE TEMPERATURE 

OF FREEZING 

M. M. Dubina and B. A. Krasovltskii UDC 536.416 

The effects of taking into account the drop in the freezing point of water in the 
calculation of the pressures of retrograde freezing, arising during idle time and 
temporary shut-down of wells in frozen soils, are analyzed. 

One of the most dangerous complications in the operation of wells in frozen soils is 
the collapse of the casing columns caused by the pressures generated by retrograde freezing. 
They appear as a result of the increase, accompanying freezing, in the volume of the water- 
bearing mass forming during drilling or operation around the well [i]. The water-bearing 
mass can be the soil which melts during operation of the well or the filtrate of flushing 
liquid in the caverns forming at the time the well is drilled. The freezing of such a water- 
bearing mass can increase the pressure in the medium surrounding the well up to magnitudes 
at which the rheological properties of the soil and the pressure dependence of the phase- 
transition temperature become significant [2]. An increase in the pressure decreases the 
freezing point of water, which slows down the process of retrograde freezing. Relaxation 
of the pressure lowers the pressure level of retrograde freezing and thereby raises the 
freezing point according to the phase diagram for water, which accelerates the freezing pro- 
cess. This close interrelationship of the theological properties of the soil and heat trans- 
fer in the process of retrograde freezing is analyzed in an axisymmetrical formulation of 
the problem, which we proposed in [2]. 

We shall study the basic equations which determine the temperature and pressure fields 
in the process of freezing of the thawed region forming around a well after the well is 
shut down. We shall separate three zones, d~ffe~ing by their thermophysical and physico- 
mechanical parameters. The first zone R~ < r < s, corresponds to thethawed phase of the 
water-bearing mass. The second, s < r < s t , corresponds t~ the mass which freezes during 
the process of retrograde freezing. The third zone, r > st, consists of the frozen soil 
which has not been subjected to thawing. We assume that the materials in all three zones 
are incompressible, the physical parameters of the second and third zone are equal, and the 
pressure distribution in the first zone is hydrostatic. These assumptions simplify the 
solution and given an upper limit for the pressures. 

We shall write the equation of heat conduction for the thawed and frozen zones in the 
following form: 

thawed zone 

001 ( 1 001 0~01 ), 
- - - -  • + ( 1 )  Ot ~ r Or Or~ ] 

l ~ r ~ s ( t ) ,  t . t ~ t < t  I, 

%=, = %h(t) (2) 

OOlOr ~=I = O, ( 3 )  

811t='t ---- 8t (r); (4) 
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frozen zone 

a02 1 002 a~02 
at r Or + Or -2 , s ( t ) < r < c o ,  (5)  

021,= ̀ -- Oph for t t ~.~ t ~ .  t i, ( 6 ' )  

002 Or r = 1 = O  for t > / t  1, ( 6 " )  

021t=t t = 0 t (r). (7)  

In  v i e w  o f  t h e  f a c t  t h a t  t h e  t h e r m o p h y s i c a l  p r o p e r t i e s  o f  t h e  s e c o n d  and t h i r d  z o n e s  
are assumed to be equal, a single problem of heat conduction with an index 2 is written for 
t hem. 

The following conditions are satisfied on the phase-transition boundary r = s: 

- -  ~1 001 002 ds 
Or + 2~2- = Or dt ' (8)  

slt=t t = s t ( 9 )  

Using Maxwell's model for the frozen state of the medium in the second and third zones, we 
obtain in accordance with [2] an expression for the pressure on the phase-transition bound- 
ary: 

! 

p = ~ 1 - -  s . ~  (G3 - -  G2) - -  s~ ~r~ dr 3 "~r~ 
' ,  �9 x �9 

t t 

We w r i t e  t h e  r e l a t i o n s h i p  b e t w e e n  t h e  p r e s s u r e  and t h e  t e m p e r a t u r e  o f  t h e  p h a s e  t r a n s i t i o n  
i n  a c c o r d a n c e  w i t h  [3] i n  t h e  f o r m  

P =  p,  --I- A11%hTol-- A~ [OhTo[ ~. (ll) 

In the relations presented above and below we used the following dimensionless variables and 
parameters [2]: 

O~ = T d T o ,  t = Ta~/R~, r = r lRo,  s = slRo, 

t t = T.ta2/R2o, P, =R] /~o ,  OF = T F / T o ,  • = a l l ~ ,  

Tr~ = u ~ =-~iTo/(a2pwl), st = s t / R o ,  

0ph--~h/To,  Gi=-GJpo ,  P=-P/Po,  
2 

P~ = -PJPo, W = W I T o ,  ts = Tsa~/Ro, 

where the values of the index i = i, 2, and 3 correspond to the enumeration of the zones 

introduced above. 

We solve the problem (1)-(ll) by the integral method [4], used in [2] for the case of 
retrograde freezing without the pressure-dependence of the phase-transition temperature. 
We shall first examine the first stage of the process, tt ~ t ~ tf~ when freezing is ob- 
served and both the thawed and frozen phases of the water-bearing mass are present. Inte- 
grating Eq. (i) with respect to the spatial coordinates, we find 

dO 1 ds 001 S ~ h - -  = x l s - -  , (12)  
dt dt Or r=s 

where 
$ 

r 1 = [ rOxdr. 
1 

We s e e k  t h e  t e m p e r a t u r e  p r o f i l e  i n  t h e  thawed  zone  i n  t h e  fo rm  

01 = (13)  
s - - l - - l n s  
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This profile satisfies the boundary conditions (2) and (3), and the unknown function W(t) -- 
the temperature of the well wall -- entering into (13) is determined from the solution of the 
problem. Substituting (13) into (12), we arrive at the following ordinary differential equa- 
tion: 

}R, + ,  WRw + ~hQO __ s~Oph= ' • ( s - -  1)(eph--W ) , (14) 
( s - -  1 - -  Ins )  ~ s - -  1 - -  l n s  s - -  I - - I n s  

where 

W ( I n s - - s )  + +T 

R.= - 5 -  s -~, (20ph+ IV) Opl~n 

7IV-- Oph 

12 t 

 -(op s - -  h + IV) + 

W 

1 (2s3__3s, " + 6 1 n s - - 6 s  + 7); 

R0 (4s 3 -  6s 2 In s - -  3s ~ - -  1). 

We seek the temperature profile in the frozen zone in the form 

0, = Bl ln  r + .B2; s~. r ~ R (t). (15) 

Here R(t) is the moving boundary of the thermal disturbance in the soil, which satisfies the 
condition 

O~Ir=n = O F. 

Substituting the profile (15) into the relation expressing the thermal balance in the frozen 
zone, we obtain 

O F [ 2 ( s s _ _ i R t ~ l n R - ( s ~ _ R , ) R  s ) J  
R s "  R s + 

4 In * 
S 

4 In R + 0ph 2 (R/~ - -  ss) In ~ - -  (R~ - -  s ~) R s = 0 p h - -  0.F ( 1 6 )  
-, 4 In ~ R s R s In R 

S S S 

Taking i n t o  a c c o u n t  t he  form of  t h e  t e m p e r a t u r e  p r o f i l e s  adop ted  i n  t he  thawed and f r o z e n  
regions, we write Stefan's condition (8) as follows: 

(+) I (iv7 %0 
- -  + = s .  

s - -  1 - -  In  s s In  ~ ( 1 7 )  

s 

To simplify the numerical solution of the problem, we introduced the following auxiliary 
functions: 

t 

t t 

which satisfy first-order differential equations of the form 

Ji 1 S "~ (t) Ji = ; i = 2 ,  3. 2 
S t Tr2 

Differentiating relation (ii) with respect to time, we obtain, 
(18), the equation 

(19) 

taking into account (i0) and 
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% 2ss ( G s - - G 2 ) -  1 - -  + x2 " (20) 
v h = - -  To (A1 + 2A~ToOt~ st "rr, Tr, r3 "~, 

Thus ,  s i x  o r d i n a r y  f i r s t - o r d e r  d i f f e r e n t i a l  e q u a t i o n s  ( 1 4 ) ,  ( 1 6 ) ,  ( 1 7 ) ,  ( 1 9 ) ,  and (20) vr i th  
t h e  i n i t i a l  c o n d i t i o n s  

sl ,=,  , = s, ,  ~ j ,= , ,  = % ,  w l , = ,  ' = ~ , ,  ( 21 )  

0hi ,=,  ' = 0. s + = , ,  = 0, s 4 , = ,  ' = 0. 

have  been  o b t a i n e d  f o r  t h e  s i x  unknown f u n c t i o n s  s ,  R, W, 0ph,  J 2 ,  J3 -  Here  s t , Rt ,  W t a r e  
t he  v a l u e s  o f  t h e  r a d i u s  o f  t he  b o u n d a r i e s  o f  t h a w i n g  and o f  the  t h e r m a l  e f f e c t  and t e m p e r a -  
t u r e  of  t h e  w e l l  w a l l  a t  t h e  t i m e  t t  a t  which  h e a t  s t o p s  f l o w i n g  f rom t h e  w e l l  i n t o  t he  
s u r r o u n d i n g  medium. The q u a n t i t i e s  s t ,  Rt ,  Wt a r e  d e t e r m i n e d  f rom t h e  s o l u t i o n  o f  t h e  p r o b -  
lem o f  h e a t i n g  o f  t h e  f r o z e n  s o i l  s u r r o u n d i n g  t h e  w o r k i n g  w e l l  [ 2 ] .  

E q u a t i o n s  ( 1 4 ) ,  ( 1 7 ) ,  and (20) h a v e  a s i n g u l a r i t y  a t  t h e  p o i n t  s = 1 ,  i . e . ,  a t  t h e  t i m e  
t = tf that the freezing front reaches the well wall. In the vicinity of the singular point 

t*~<t~<t:, l~<s<1+~ 
the indicated equations can be represented in the following form 

e W= 2• 2 ~ (eph--W) 
op h+ -~ ( s -  1)~ + - ~  ~ -  x ' (22) 

S ! 2~'1 (1~ -- Opla) ~ (OF -- %1~ --= + , (23) 
s - -  1 lnR 

�9 ao [ 2s" J s G 3 J 2 G . , . ]  (24) 
OP h-= To(AI + 2A2ToOI~ --'-~t (G3-G2) + ,r23 .~2r2 �9 

The system of Eqs. (22)-(24) admits a self-similar solution of the form 

s = 1 + c~(t--tl) ,  (25) 

Oph= O / +  c ( t -  t:) + c 2 ( t -  t:) 2, (26) 

W = O / +  c (t -- t/) + c3 (t -- tl)', (27) 

where c ,  c,, ca, c3 are coefficients to be determined; 0f = 0ph(t f) = W(tf). 

We introduce the following notation: 

O* " W* s* : :  s (t*), p ~  0ph(t* ), = W (t*); 

R* = R (I*), J~ = J~ (t*), I * =  J*3G3 J2G2 
T 2 T22 ?33 

The values of these quantities can be obtained by numerically solving the equations intro- 
duced above in the time interval [tt, t*]. Substituting the functions (25)-(27) into the 
system (22)-(24), we can obtain a system of algebraic equations for the unknown coefficients: 

c1 

2 •  5 a~ (Gc 1 + I*) (29) 
c~ 3 To(A1 + 2Azr00~) 

e~ (t* -- t /)  ~ = ~h-- W * ,  (30) 
c~ = (s* - -  1)/(t* - -  tf), (31) 

where  c~ = c 2 - c ~ ;  G = - - 2 ( G ~ -  G ~ ) / s ~ .  S o l v i n g  t h e  s y s t e m  ( 2 8 ) - ( 3 1 ) ,  we f i n d  t h e  d i m e n s i o n -  
l e s s  time tf at which the thawed zone disappears and the values of the phase-transition and 
wall temperatures at this time. 

After the thawed zone has vanished (t > tf), the pressure and temperature fields con- 
tinued to evolve. The temperature field is described by Eq. (5) with the boundary condition 
(6") and the initial condition at t = tf, following from the continuity of the temperature 
at this time. To obtain an approximate solution of the problem at the stage t > if, we 
assume that the temperature profile has the form 
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Fig. i. Behavior of the 
phase-transition temperature 
0ph as a function of time 
(~ph, t are dimensionless). 
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Fig. 2. Dynamics of the motion of the freezing front s(t) 
(s, t are dimensionless). 

Fig. 3. Behavior of the temperature of the well wall W as 
a function of time (W, t are dimensionless). 

[ ( r l)] 
02~-0 F-[ W - - 0 F  1 + c o s  ~ - -  �9 

2 R -  I (32) 

This distribution satisfies the boundary condition (6") and the condition that the tempera- 
ture gradient vanish at the radius of the thermal effect. From the condition that the heat 
content of the soil remain constant 

R 
.t rOflr = K ~r  t >  tt  
1 

we obtain a relation between the radius of the thermal effect and the temperature at the wall 
of the well: 

W - -  0 F (R~ - -  1) ~ 2  4 (Ri - -  1)* 
Wf--O F (R2-- I) ~ -- 4 (R -- I)~ ' (33) 

where Wf = W(tf), Rf = R(tf). 

Relation (33) together with the law for ~(t) [2] 

1 ( R ~ + R _ _  6RlnR  + 4 )  (34) 
t = . 1 2  - R__ ! 

describe the behavior of the temperature W(t) after the thawed zone has vanished. The pres- 
sure at the wall of the well for t > tf is determined by Eqs. (i0) and (19), where it is 
necessary to set s(t) = i. 
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Fig. 4. Results of the calcula- 
tion of the pressure p(t) (p, t 
are dimensionless). 

The proposed method for calculating the temperature and pressure fields on the casing 
column was implemented on the Nord computer, for which a Fortran-V program was written. 
The following parameters were used in the calculations, in accordance with [2], for all 

variants: ~ = 1.54 kcal/m'h'deg; ~2 = 1.8 kcal/m'h'deg; ~ = 0.06 kcal/m'h'deg; a~ = 
2.49"10 -3 m2/h; a2 = 2.92"10 -3 m2/h; To = 25~ w = 0.159; av = 0.03~ p = 1400 kg/mT[ I = 
80 kcal/kg; Ro = 0.14 m; R~ = 0.1304 m; G2 = 4 "I0~ kgf/cm2; G3 5.10 kgf/cm2; Po = Pa = 
I kgf/cm 2 . 

The results of the calculations are presented in Figs. 1-4, where the curves corre- 
sponding to the variants have a double letter-number subscript. Calculations were performed 
for two series of variants, differing by the value of the temperature of the frozen soil T F. 
For T F = --5~ the curves in the figures are labelled by the index A and the series T F = 
--10~ corresponds to the index B. The number indices on the curves 1-3 correspond to one 
of the following values of the relaxation time in order of enumeration: Trs/Tr2 = i000/i00; 
500/1000; i000/i000 (h). The index 0 corresponds to the solution ignoring the dependence 
eph (p) for the case Tr3/~r2 = i000/I000. An analysis of the computational results shows that 
taking into account the pressure dependence of the phase-transition temperatures decreases 
the rate of freezing and therefore also lowers the values of the pressures and temperatures 
of the phase transition. In connection with this, the acceleration of the freezing front 
accompanying the drop in TF will be less distinct than when the dependence 8ph(P) is ignored. 
The nature of the process is strongly affected by the physicomechanical parameters. This is 
manifested as an increase in the magnitudes of the pressure accompanying the increase in the 
viscosity ~3 = G=Tr3 of the third zone compared to the corresponding value for the second 
zone. Depending on the ratio of the viscosities of these zones, the freezing can be accom- 
panied by a continuous increase in pressure up to the moment of complete freezing or the 
pressures reach a maximum value in the time interval [tt, tf]. In the case ~3 < ~2 the pres- 
sures relax much more rapidly than for ~3 > ~2; in addition, the pressures increase when the 
ratio Tr3/Tr2 increases. 

We emphasize also the qualitative difference between the results of the calculation 
based on the viscoelastic model for the growth of the pressures studied here and the results 
obtained with the elastic and elastoplastic models [5]. This difference consists of the con- 
tinuous relaxation of the pressures of retrograde freezing, manifested in the existence of 
their maxima at the end of the time interval, which for the elastic and elastoplastic models 
is reached over an infinitely long time. 

NOTATION 

T, time; r, radial coordinate; ~, radius of freezing; st, initial radius of the thawed 
zone; ~ri, relaxation times; Ti, To, temperature and its scale; Ro, radius of the well; Tph , 
TF, temperatures of the phase transition and of the initial frozen soil; a~, a2, coefficients 
of thermal diffusivity of the thawed and frozen zones; ~I, ~2, coefficients of thermal con- 
ductivity_of the thawed and frozen zones; W, temperature of the well wall; Gi, elastic shear 
modulus; p, po, pressure and its scale; Pa, atmospheric pressure; and R, radius of the 
thermal disturbance. 
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A CLASS OF PLANE SELF-SIMILAR MOTIONS OF A NON-NEWTONIAN FLUID 

WITH NONLINEAR THERMOPHYSICAL PROPERTIES 

O. N. Shablovskii UDC 532.517:536.24 

The plane self-similar solution of a set of complete equations for the dynamics 
of a nonlinearly viscous fluid and the energy equation is obtained analytically 
with the temperature dependence of the transfer coefficients taken into account. 

ble 
tion, 

i. INITIAL EQUATIONS AND NEW INDEPENDENT VARIABLES 

We take the generalized Z. P. Shul'man model of a nonlinearly viscoplastic incompressi- 
fluid as a basis and we write the equations of two-dimensional plane nonstationary mo- 
the continuity and heat balance equations [i] : 

u, + (plp + u S- xnlP)~ + (uv- ~izlP)y = 0, 

v, + (uv-  ~2/P)~ + (P/~ + ~-- ~lP)y = O, 

u ~ + v  u = O ,  p ~ c o n s t ,  

pcp (T t + uT~ + vr~) = (~,r~)x + (~ry)y + A~B, 

Tll = 2Bu~, "q~ = "~1 = B (uy + v~), "~  = 2Bvy, 
1 1 1 1 n 

A = [2u~ + 2v~ + (% + v~)~] -5-, B = [~o ~ A z + t~-~-I ~ A m 

p,----I x(T), )~=L(T), cp----cp(T). 

(1) 

(2) 

(3) 
(4) 

(5) 

We here assume p differentiable with respect to x, y, t and u, v, T twice differentiable with 
respect to x, y and once with respect to t. All these derivatives as well as the second 
mixed derivatives of the functions p, u, v, T in the arguments x, y, t are considered con- 
tinuous in the space--time domain under consideration. 

Equation (2) can be satisfied by taking 

v = - - ~ y ,  uv ~2 _ ~ ,  P--~2~ , v ~ = ~ _ q ~ .  
P 

We substitute the expression p from the last formula into (I), regroup the terms therein by 
using the equality ~tx = ~xt and satisfy the equation obtained as follows 
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